By the end of this section, you will be able to:
The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast with a continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous rather than discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal pieces and treat each piece as a point charge.
Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most practical cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore the discrete nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when we deal with a bucket of water as a continuous fluid, rather than a collection of molecules.
Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as shown in Figure 5.22.
Definitions of charge density:
Then, for a line charge, a surface charge, and a volume charge, the summation in Equation 5.4 becomes an integral and is replaced by , , or , respectively:
The integrals are generalizations of the expression for the field of a point charge. They implicitly include and assume the principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for dl, dA, or dV, as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be constant; it might be dependent on location.
Note carefully the meaning of r in these equations: It is the distance from the charge element to the location of interest, (the point in space where you want to determine the field). However, don’t confuse this with the meaning of ; we are using it and the vector notation to write three integrals at once. That is, Equation 5.9 is actually
The electric field for a line charge is given by the general expression
The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal (x)-components of the field cancel, so that the net field points in the z-direction. Let’s check this formally.
The total field is the vector sum of the fields from each of the two charge elements (call them and , for now):
Because the two charge elements are identical and are the same distance away from the point P where we want to calculate the field, so those components cancel. This leaves
These components are also equal, so we have
where our differential line element dl is dx, in this example, since we are integrating along a line of charge that lies on the x-axis. (The limits of integration are 0 to , not to , because we have constructed the net field from two differential pieces of charge dq. If we integrated along the entire length, we would pick up an erroneous factor of 2.)
In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables that are not given. In this case, both r and change as we integrate outward to the end of the line charge, so those are the variables to get rid of. We can do that the same way we did for the two point charges: by noticing that
and
Substituting, we obtain
which simplifies to
How would the strategy used above change to calculate the electric field at a point a distance z above one end of the finite line segment?
where our differential line element dl is dx, in this example, since we are integrating along a line of charge that lies on the x-axis. Again,
Substituting, we obtain
which simplifies to
In the case of a finite line of charge, note that for , dominates the L in the denominator, so that Equation 5.12 simplifies to
If you recall that , the total charge on the wire, we have retrieved the expression for the field of a point charge, as expected.
In the limit , on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length is much, much greater than either of its other dimensions, and also much, much greater than the distance at which the field is to be calculated:
An interesting artifact of this infinite limit is that we have lost the usual dependence that we are used to. This will become even more intriguing in the case of an infinite plane.
A general element of the arc between and is of length and therefore contains a charge equal to The element is at a distance of from P, the angle is , and therefore the electric field is
as we expect.
To solve surface charge problems, we break the surface into symmetrical differential “strips” that match the shape of the surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components cancel and the field is entirely in the vertical direction. The vertical component of the electric field is extracted by multiplying by , so
As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,
(Please take note of the two different “r’s” here; r is the distance from the differential ring of charge to the point P where we wish to determine the field, whereas is the distance from the center of the disk to the differential ring of charge.) Also, we already performed the polar angle integral in writing down dA.
or, more simply,
which is the expression for a point charge
How would the above limit change with a uniformly charged rectangle instead of a disk?
As , Equation 5.14 reduces to the field of an infinite plane, which is a flat sheet whose area is much, much greater than its thickness, and also much, much greater than the distance at which the field is to be calculated:
Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge. Does the plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how far you are from it. It is important to note that Equation 5.15 is because we are above the plane. If we were below, the field would point in the direction.
However, in the region between the planes, the electric fields add, and we get
for the electric field. The is because in the figure, the field is pointing in the +x-direction.
What would the electric field look like in a system with two parallel positively charged planes with equal charge densities?