Back to table of contentsAppendix E Mathematical Formulas

Appendix E Mathematical Formulas

Quadratic formula

If ax2+bx+c=0, then x=b±b24ac 2a

Triangle of base b and height h Area =12 bh
Circle of radius r Circumference =2πr Area =πr2
Sphere of radius r Surface area =4πr2 Volume =43 πr3
Cylinder of radius r and height h Area of curved surface =2πrh Volume =πr2h
Table E1 Geometry

Trigonometry

Trigonometric Identities

  1. sinθ=1/cscθ
  2. cosθ=1/secθ
  3. tanθ=1/cotθ
  4. sin(900θ ) =cosθ
  5. cos(900θ ) =sinθ
  6. tan(900θ ) =cotθ
  7. sin2θ+cos2θ=1
  8. sec2θtan2θ=1
  9. tanθ=sinθ/cosθ
  10. sin(α±β ) =sinαcosβ±cosαsinβ
  11. cos(α±β ) =cosαcosβsinαsinβ
  12. tan(α±β ) =tanα±tanβ 1tanαtanβ
  13. sin2θ=2sinθcosθ
  14. cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ
  15. sinα+sinβ=2sin12 (α+β ) cos12 (αβ )
  16. cosα+cosβ=2cos12 (α+β ) cos12 (αβ )
  17. s=rθ

Triangles

  1. Law of sines: asinα =bsinβ =csinγ
  2. Law of cosines: c2=a2+b22abcosγ
    Figure shows a triangle with three dissimilar sides labeled a, b and c. All three angles of the triangle are acute angles. The angle between b and c is alpha, the angle between a and c is beta and the angle between a and b is gamma.
  3. Pythagorean theorem: a2+b2=c2
    Figure shows a right triangle. Its three sides are labeled a, b and c with c being the hypotenuse. The angle between a and c is labeled theta.

Series expansions

  1. Binomial theorem: (a+b ) n=an+nan1b+n(n1 ) an2b2 2! +n(n1 ) (n2 ) an3b3 3! +···
  2. (1±x ) n=1±nx 1! +n(n1 ) x2 2! ±···(x2<1 )
  3. (1±x ) n=1nx 1! +n(n+1 ) x2 2! ···(x2<1 )
  4. sinx=xx3 3! +x5 5! ···
  5. cosx=1x2 2! +x4 4! ···
  6. tanx=x+x3 3 +2x5 15 +···
  7. ex=1+x+x2 2! +···
  8. ln(1+x ) =x12 x2+13 x3···(|x| <1 )

Derivatives

  1. ddx [af(x) ] =addx f(x)
  2. ddx [f(x) +g(x) ] =ddx f(x) +ddx g(x)
  3. ddx [f(x) g(x) ] =f(x) ddx g(x) +g(x) ddx f(x)
  4. ddx f(u) =[ddu f(u) ] du dx
  5. ddx xm=mxm1
  6. ddx sinx=cosx
  7. ddx cosx=sinx
  8. ddx tanx=sec2x
  9. ddx cotx=csc2x
  10. ddx secx=tanxsecx
  11. ddx cscx=cotxcscx
  12. ddx ex=ex
  13. ddx lnx=1x
  14. ddx sin−1x=11x2
  15. ddx cos−1x=11x2
  16. ddx tan−1x=11+x2

Integrals

  1. af(x) dx =af(x) dx
  2. [f(x) +g(x) ] dx =f(x) dx +g(x) dx
  3. xmdx =xm+1 m+1 (m1 ) =lnx(m=−1)
  4. sinxdx =cosx
  5. cosxdx =sinx
  6. tanxdx =ln|secx |
  7. sin2axdx =x2 sin2ax 4a
  8. cos2axdx =x2 +sin2ax 4a
  9. sinaxcosaxdx =cos2ax 4a
  10. eaxdx =1a eax
  11. xeaxdx =eax a2 (ax1 )
  12. lnaxdx =xlnaxx
  13. dx a2+x2 =1a tan−1xa
  14. dx a2x2 =12a ln|x+a xa |
  15. dx a2+x2 =sinh−1xa
  16. dx a2x2 =sin−1xa
  17. a2+x2 dx =x2 a2+x2 +a2 2 sinh−1xa
  18. a2x2 dx =x2 a2x2 +a2 2 sin−1xa
  19. 1 (x2+a2)3/2 dx =x a2x2+a2
  20. x (x2+a2)3/2 dx =1 x2+a2
Back to table of contents