Back to table of contents Key Equations

Key Equations

Angular position θ=sr
Angular velocity ω=lim Δt0 Δθ Δt =dθ dt
Tangential speed vt=rω
Angular acceleration α=lim Δt0 Δω Δt =dω dt =d2θ dt2
Tangential acceleration at=rα
Average angular velocity ω =ω0+ωf 2
Angular displacement θf=θ0+ω t
Angular velocity from constant angular acceleration ωf=ω0+αt
Angular velocity from displacement and
constant angular acceleration
θf=θ0+ω0t+12 αt2
Change in angular velocity ωf2=ω02+2α(Δθ)
Total acceleration a =a c+a t
Rotational kinetic energy K=12 (j mjrj2 ) ω2
Moment of inertia I=j mjrj2
Rotational kinetic energy in terms of the
moment of inertia of a rigid body
K=12 Iω2
Moment of inertia of a continuous object I=r2dm
Parallel-axis theorem Iparallel-axis=Icenter of mass+md2
Moment of inertia of a compound object Itotal=i Ii
Torque vector τ =r ×F
Magnitude of torque |τ | =rF
Total torque τ net=i |τ i |
Newton’s second law for rotation i τi =Iα
Incremental work done by a torque dW=(i τi ) dθ
Work-energy theorem WAB=KBKA
Rotational work done by net force WAB=θA θB (i τi ) dθ
Rotational power P=τω
Back to table of contents