By the end of this section, you will be able to:
A circuit with resistance and self-inductance is known as an RL circuit. Figure 14.12(a) shows an RL circuit consisting of a resistor, an inductor, a constant source of emf, and switches and When is closed, the circuit is equivalent to a single-loop circuit consisting of a resistor and an inductor connected across a source of emf (Figure 14.12(b)). When is opened and is closed, the circuit becomes a single-loop circuit with only a resistor and an inductor (Figure 14.12(c)).
We first consider the RL circuit of Figure 14.12(b). Once is closed and is open, the source of emf produces a current in the circuit. If there were no self-inductance in the circuit, the current would rise immediately to a steady value of However, from Faraday’s law, the increasing current produces an emf across the inductor. In accordance with Lenz’s law, the induced emf counteracts the increase in the current and is directed as shown in the figure. As a result, I(t) starts at zero and increases asymptotically to its final value.
Applying Kirchhoff’s loop rule to this circuit, we obtain
which is a first-order differential equation for I(t). Notice its similarity to the equation for a capacitor and resistor in series (See RC Circuits). Similarly, the solution to Equation 14.23 can be found by making substitutions in the equations relating the capacitor to the inductor. This gives
where
is the inductive time constant of the circuit.
The current I(t) is plotted in Figure 14.13(a). It starts at zero, and as , I(t) approaches asymptotically. The induced emf is directly proportional to dI/dt, or the slope of the curve. Hence, while at its greatest immediately after the switches are thrown, the induced emf decreases to zero with time as the current approaches its final value of The circuit then becomes equivalent to a resistor connected across a source of emf.
The energy stored in the magnetic field of an inductor is
Thus, as the current approaches the maximum current , the stored energy in the inductor increases from zero and asymptotically approaches a maximum of
The time constant tells us how rapidly the current increases to its final value. At the current in the circuit is, from Equation 14.24,
which is of the final value . The smaller the inductive time constant the more rapidly the current approaches .
We can find the time dependence of the induced voltage across the inductor in this circuit by using and Equation 14.24:
The magnitude of this function is plotted in Figure 14.13(b). The greatest value of it occurs when dI/dt is greatest, which is immediately after is closed and is opened. In the approach to steady state, dI/dt decreases to zero. As a result, the voltage across the inductor also vanishes as
The time constant also tells us how quickly the induced voltage decays. At the magnitude of the induced voltage is
The voltage across the inductor therefore drops to about of its initial value after one time constant. The shorter the time constant the more rapidly the voltage decreases.
After enough time has elapsed so that the current has essentially reached its final value, the positions of the switches in Figure 14.12(a) are reversed, giving us the circuit in part (c). At the current in the circuit is With Kirchhoff’s loop rule, we obtain
The solution to this equation is similar to the solution of the equation for a discharging capacitor, with similar substitutions. The current at time t is then
The current starts at and decreases with time as the energy stored in the inductor is depleted (Figure 14.14).
The time dependence of the voltage across the inductor can be determined from
This voltage is initially , and it decays to zero like the current. The energy stored in the magnetic field of the inductor, also decreases exponentially with time, as it is dissipated by Joule heating in the resistance of the circuit.
Verify that RC and L/R have the dimensions of time.
(a) If the current in the circuit of in Figure 14.12(b) increases to of its final value after 5.0 s, what is the inductive time constant? (b) If , what is the value of the self-inductance? (c) If the resistor is replaced with a resister, what is the time taken for the current to reach of its final value?
For the circuit of in Figure 14.12(b), show that when steady state is reached, the difference in the total energies produced by the battery and dissipated in the resistor is equal to the energy stored in the magnetic field of the coil.