Back to table of contents Key Equations

Key Equations

Wien’s displacement law λmaxT=2.898×103mK
Stefan’s law P(T)=σAT4
Planck’s constant h=6.626×1034Js=4.136×1015eVs
Energy quantum of radiation ΔE=hf
Planck’s blackbody radiation law I(λ,T)=2πhc2λ51ehc/λkBT1
Maximum kinetic energy
of a photoelectron
Kmax=eΔVs
Energy of a photon Ef=hf
Energy balance for photoelectron Kmax=hfϕ
Cut-off frequency fc=ϕh
Relativistic invariant
energy equation
E2=p2c2+m02c4
Energy-momentum relation
for photon
pf=Efc
Energy of a photon Ef=hf=hcλ
Magnitude of photon’s momentum pf=hλ
Photon’s linear
momentum vector
pf=k
The Compton wavelength
of an electron
λc=hm0c=0.00243nm
The Compton shift Δλ=λc(1cosθ)
The Balmer formula 1λ=RH(1221n2)
The Rydberg formula 1λ=RH(1nf21ni2),ni=nf+1,nf+2,
Bohr’s first quantization condition Ln=n,n=1,2,
Bohr’s second quantization condition hf=|EnEm|
Bohr’s radius of hydrogen a0=4πε02mee2=0.529Å
Bohr’s radius of the nth orbit rn=a0n2
Ground-state energy value,
ionization limit
E0=18ε02mee4h2=13.6eV
Electron’s energy in
the nth orbit
En=E01n2
Ground state energy of
hydrogen
E1=E0=13.6eV
The nth orbit of
hydrogen-like ion
rn=a0Zn2
The nth energy
of hydrogen-like ion
En=Z2E01n2
Energy of a matter wave E=hf
The de Broglie wavelength λ=hp
The frequency-wavelength relation
for matter waves
λf=cβ
Heisenberg’s uncertainty principle ΔxΔp12
Back to table of contents