Bunsen’s burner
The wavelength of the radiation maximum decreases with increasing temperature.
Tα/Tβ=1/3≅0.58, so the star β is hotter.
3.3 × 10 −19 J
No, because then ΔE/E≈10−21
−0.91 V; 1040 nm
h = 6.40 × 10 −34 J · s = 4.0 × 10 −15 eV · s; − 3.5 %
(Δλ)min=0m at a 0° angle; 71.0pm+0.5λc=72.215pm
121.5 nm and 91.1 nm; no, these spectral bands are in the ultraviolet
v2=1.1×106m/s≅0.0036c; L2=2ℏK2=3.4eV
29 pm
λ = 2 π n a 0 = 2 ( 3.324 Å ) = 6.648 Å
λ=2.14pm; K=261.56keV
0.052 °
doubles it
yellow
goes from red to violet through the rainbow of colors
would not differ
human eye does not see IR radiation
No
from the slope
Answers may vary
the particle character
no; yes
no
right angle
They are at ground state.
increase
for larger n
Yes, the excess of 13.6 eV will become kinetic energy of a free electron.
X-rays, best resolving power
proton
negligibly small de Broglie’s wavelengths
to avoid collisions with air molecules
yes
a. 0.81 eV; b. 2.1×1023; c. 2 min 20 sec
a. 7245 K; b. 3.62 μm
about 3 K
4.835×1018 Hz; 0.620 Å
263 nm; no
3.68 eV
4.09 eV
5.60 eV
a. 1.89 eV; b. 459 THz; c. 1.21 V
264 nm; UV
1.95 × 10 6 m/s
1.66 × 10 − 32 kg · m/s
56.21 eV
6.63×10−23kg·m/s; 124 keV
82.9 fm; 15 MeV
(Proof)
Δ λ 30 / Δ λ 45 = 45.74 %
121.5 nm
a. 0.661 eV; b. –10.2 eV; c. 1.511 eV
3038 THz
97.33 nm
a. h/π; b. 3.4 eV; c. – 6.8 eV; d. – 3.4 eV
n = 4
365 nm; UV
7
145.5 pm
20 fm; 9 fm
a. 2.103 eV; b. 0.846 nm
80.9 pm
2.21 × 10 − 19 m/s
9.929 × 10 32
γ=1060; 0.00124 fm
24.11 V
a. P=2I/c=8.67×10−6N/m2; b. a=PA/m=8.67×10-4m/s2; c. 74.91 m/s
x = 4.965
7.124 × 10 16 W/m 3
1.034 eV
5.93 × 10 18
387.8 nm
a. 4.02×1015; b. 0.508 mW
a. 4.02×1015; b. 0.533 mW; c. 0.644 mA; d. 2.57 ns
a. 0.132 pm; b. 9.39 MeV; c. 0.047 MeV
a. 2 kJ; b. 1.33×10−5kg·m/s; c. 1.33×10−5N; d. yes
a. 0.003 nm; b. 105.56°
n = 3
a. a0/2; b. −54.4eV/n2; c. a0/3,−122.4eV/n2
a. 36; b. 18.2 nm; c. UV
396 nm; 5.23 neV
7.3 keV
728 m/s; 1.5μV
λ = h c / K ( 2 E 0 + K ) = 3.705 × 10 − 12 m, K = 100 keV
Δ λ c ( electron ) / Δ λ c ( proton ) = m p / m e = 1836
5.1 × 10 17 Hz