Back to table of contents Chapter 2

Chapter 2

Check Your Understanding

2.1

a. not equal because they are orthogonal; b. not equal because they have different magnitudes; c. not equal because they have different magnitudes and directions; d. not equal because they are antiparallel; e. equal.

2.2

16 m; D =−16mu^

2.3

G = 28.2 cm, θG=291°

2.4

D =(−5.0i^ 3.0j^ )cm ; the fly moved 5.0 cm to the left and 3.0 cm down from its landing site.

2.5

5.83 cm, 211°

2.6

D = ( −20 m ) i ^

2.7

35.2 m/s = 126.7 km/h

2.8

G = ( 10.25 i ^ 26.22 j ^ ) cm

2.9

D = 55.7 N; direction 65.7° north of east

2.10

v^ =0.8i^ +0.6j^ , 36.87° north of east

2.11

A ·B =−57.3 , F ·C =27.8

2.13

131.9 °

2.14

W1=1.5J , W2=0.3J

2.15

A ×B =−40.1k^ or, equivalently, |A ×B |=40.1 , and the direction is into the page; C ×F =+157.6k^ or, equivalently, |C ×F |=157.6 , and the direction is out of the page.

2.16

a. −2k^ , b. 2, c. 153.4° , d. 135°

Conceptual Questions

1.

scalar

3.

answers may vary

5.

parallel, sum of magnitudes, antiparallel, zero

7.

no, yes

9.

zero, yes

11.

no

13.

equal, equal, the same

15.

a unit vector of the x-axis

17.

They are equal.

19.

yes

21.

a. C=A ·B , b. C =A ×B or C =A B , c. C =A ×B , d. C =AB , e. C +2A =B , f. C =A ×B , g. left side is a scalar and right side is a vector, h. C =2A ×B , i. C =A /B , j. C =A /B

23.

They are orthogonal.

Problems

25.

h =−49mu^ , 49 m

27.

30.8 m, 35.7° west of north (equivalently, 54.2° north of west or 125.7° from east)

29.

134 km, 80°

31.

7.34 km, 63.5° south of east

33.

3.8 km east, 3.2 km north, 7.0 km

35.

14.3 km, 65°

37.

a. A =+8.66i^ +5.00j^ , b. B =+3.01i^ +3.99j^ , c. C =+6.00i^ 10.39j^ , d. D =−15.97i^ +12.04j^ , f. F =−17.32i^ 10.00j^

The figure shows an x-y axis in the upper left corner followed by 5 unique vectors drawn on the x-y plane. Vector A has a magnitude of 10.0 and points 30 degrees above the x-axis. Vector B has a magnitude of 5.0 and points 53 degrees above the x-axis. Vector C has a magnitude of 12.0 and points 60 degrees below the x-axis. Vector D has a magnitude of 20.0 and points 37 degrees above the negative x-axis. Vector F has a magnitude of 20.0 and points 30 degrees below the negative x-axis.
39.

a. 1.94 km, 7.24 km; b. proof

41.

3.8 km east, 3.2 km north, 2.0 km, D =(3.8i^ +3.2j^ )km

43.

P1(2.165m,1.250m) , P2(−1.900m,3.290m) , 4.55 m

45.

8.60 m, A(25 m,0.647π) , B(32 m,0.75π)

47.

a. A +B =−4i^ 6j^ , |A +B |=7.211,θ=236° ; b. A B =–2i^ +2j^ , |A B |=22 ,θ=135°

49.

a. C =(5.0i^ 1.0j^ 3.0k^ )m,C=5.92m ;
b. D =(4.0i^ 11.0j^ +15.0k^ )m,D=19.03m

51.

D =(3.3i^ 6.6j^ )km , i^ is to the east, 7.34 km, −63.5°

53.

a. R =−1.35i^ 22.04j^ , b. R =−17.98i^ +0.89j^

55.

D =(200i^ +300j^ )yd , D = 360.5 yd, 56.3° north of east; The numerical answers would stay the same but the physical unit would be meters. The physical meaning and distances would be about the same because 1 yd is comparable with 1 m.

57.

R = ( −3 i ^ 16 j ^ ) m

59.

E =EE^ , Ex=+178.9V/m , Ey=−357.8V/m , Ez=0.0V/m , θE=tan−1(2)

61.

a. –34.290 R B=(–12.278i^ +7.089j^ +2.500k^ )km , R D=(−34.290i^ +3.000k^ )km ; b. |R BR D|=23.131km

63.

a. 0, b. 0, c. –0.866, d. –17.32

65.

θ i = 64.12 ° , θ j = 150.79 ° , θ k = 77.39 °

67.

a. −120k^ , b. 0k^ , c. 94k^ , d. –240k^ , e. 4.0k^ , f. −3.0k^ , g. 15k^ , h. 0

69.

a. 0, b. 0, c. 20,000k^

Additional Problems

71.

a. 18.4 km and 26.2 km, b. 31.5 km and 5.56 km

73.

a. (r,πφ ) , b. (2r,φ+2π) , c. (3r,φ)

75.

d PM = 6.2 nmi = 11.4 km , d NP = 7.2 nmi = 13.3 km

77.

proof

79.

a. 10.00 m, b. 5πm , c. 0

81.

22.2 km/h, 35.8° south of west

83.

270 m, 4.2° north of west

85.

B =−4.0i^ +3.0j^ or B =4.0i^ 3.0j^

87.

proof

Challenge Problems

89.

G H = 19 N / 17 4.6 N

91.

proof

Back to table of contents